Indentation Size Effect and Strain Rate Sensitivity of Nanocrystalline Mg-Al Alloys
نویسندگان
چکیده
Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.
منابع مشابه
HALL-PETCH RELATIONSHIP AND STRAIN RATE SENSITIVITY OF NANOCRYSTALLINE Mg - 5WT% Al ALLOY
This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. ...
متن کاملNanocrystalline Mg-3%Al Alloy: its Synthesis and Investigation of its Tensile Behavior
The tensile properties of Mg-3%Al nanocrystalline alloys were investigated at different test environment. Bulk nanocrystalline samples of these alloy was successfully prepared by mechanical alloying (MA) followed by cold compaction, sintering, and hot extrusion process. The crystal size of the consolidated milled sample was calculated by X-Ray line profile analysis. The deformation mechanism an...
متن کاملFinite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials
Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...
متن کاملCompressive behaviour of nanocrystalline Mg–5Al alloys
Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg–5Al alloys was investigated using compressio...
متن کاملEffect of grain size on strain rate sensitivity of cryomilled Al– Mg alloy
Al–Mg alloy powder was cryomilled to achieve a nanocrystalline (NC) structure having an average grain size of 50 nm with high thermal stability, and then consolidated by quasi-isostatic forging. The consolidation resulted in a bulk material with ultrafine grains of about 250 nm, and the material exhibited enhanced strength compared to conventionally processed Al–Mg alloy. The hardness of as-cry...
متن کامل